

上海底特精密紧固件股份有限公司
地址:上海市青浦区久业路89号
电话:021-60570389
传真:021-60570388
邮编:201799
E-mail:info@shanghaidite.com

氢脆的机理——陷阱效应
所谓锁紧螺母氢脆,是指氢原子侵入基体材料中而引起的材料延迟失效断裂。氢脆通常表现为应力作用下的延迟断裂现象。其主要原理是将钢铁基体中一些易于渗入氢原子的位置形容为“陷阱”,这些位置包括钢铁结构中的晶界、位错中心、非金属夹杂物及碳化物等与钢铁原子之间形成的固-固界面,还有应力中心等。当活动氢原子进入这些“陷阱”,即被束缚而成为非活跃氢原子。氢原子在陷阱位置的聚集将使材料的断裂应力下降,应力集中部位将形成裂纹,裂纹逐渐扩展直至断裂发生,此即为氢脆引起的延迟断裂现象。氢脆一般发生在零件受到静态载荷的条件下,紧固件在安装后可能在数小时或此后更长的时间内出现断裂。而零件承受动态高应变载荷时,例如在进行拉伸试验时,载荷在短时间内迅速增加最后达到零件拉力载荷极限而发生断裂,则不易发生氢脆。因此判断氢脆不宜采取拉伸试验的方法,具体方法将在后文阐述。
按陷阱的深度不同,陷阱可分为可逆和不可逆两种,这取决于陷阱束缚能的强弱。当陷阱束缚能较弱,即陷阱比较浅,氢原子可轻易摆脱陷阱的束缚重新成为活跃氢原子,这种陷阱称为可逆陷阱,也可称为引力陷阱,这种陷阱的束缚能主要来自电场、应力场、温度梯度或非典型的化学势,这些束缚能不是零件自身存在的,一般是外界环境对零件的影响,当外界环境变化束缚能消失,氢原子可能会逃逸出陷阱。当氢原子在基体内扩散时,可逆陷阱实际上既是氢原子的巢穴,也可转变为释放氢原子的来源。不可逆陷阱的束缚能较强,陷阱比较深,氢原子一旦进入其中就很难再逃逸出来,例如大角度晶界、夹杂物或碳化物与钢铁原子之间形成的固-固界面、孔穴等等位置,这种陷阱是物理性的,也可称为物理陷阱,它只能成为氢原子的巢穴。
摘自《紧固件》
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |